774 research outputs found

    Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions

    No full text
    17 pages.International audienceWe study the inverse problem of determining a real-valued potential in the two-dimensional Schrödinger equation at negative energy from the Dirichlet-to-Neumann map. It is known that the problem is ill-posed and a stability estimate of logarithmic type holds. In this paper we prove three new stability estimates. The main feature of the first one is that the stability increases exponentially with respect to the smoothness of the potential, in a sense to be made precise. The others show how the first estimate depends on the energy, for low and high energies (in modulus). In particular it is found that for high energies the stability estimate changes, in some sense, from logarithmic type to Lipschitz type: in this sense the ill-posedness of the problem decreases when increasing the energy (in modulus)

    Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT

    Get PDF
    In this paper, we develop a shape optimization-based algorithm for the electrical impedance tomography (EIT) problem of determining a piecewise constant conductivity on a polygonal partition from boundary measurements. The key tool is to use a distributed shape derivative of a suitable cost functional with respect to movements of the partition. Numerical simulations showing the robustness and accuracy of the method are presented for simulated test cases in two dimensions

    Neural networks for classification of strokes in electrical impedance tomography on a 3D head model

    Full text link
    We consider the problem of the detection of brain hemorrhages from three dimensional (3D) electrical impedance tomography (EIT) measurements. This is a condition requiring urgent treatment for which EIT might provide a portable and quick diagnosis. We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes. The networks are trained on a dataset with 40 00040\,000 samples of synthetic electrode measurements generated with the complete electrode model on realistic heads with a 3-layer structure. We consider changes in head anatomy and layers, electrode position, measurement noise and conductivity values. We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling (different shapes and volumes), higher levels of noise and different amounts of electrode misplacement. On most test datasets we achieve ≄90%\geq 90\% average accuracy with fully connected neural networks, while the convolutional ones display an average accuracy ≄80%\geq 80\%. Despite the use of simple neural network architectures, the results obtained are very promising and motivate the applications of EIT-based classification methods on real phantoms and ultimately on human patients.Comment: 17 pages, 11 figure

    New global stability estimates for the Calder\'on problem in two dimensions

    Full text link
    We prove a new global stability estimate for the Gel'fand-Calder\'on inverse problem on a two-dimensional bounded domain or, more precisely, the inverse boundary value problem for the equation −Δψ+v ψ=0-\Delta \psi + v\, \psi = 0 on DD, where vv is a smooth real-valued potential of conductivity type defined on a bounded planar domain DD. The principal feature of this estimate is that it shows that the more a potential is smooth, the more its reconstruction is stable, and the stability varies exponentially with respect to the smoothness (in a sense to be made precise). As a corollary we obtain a similar estimate for the Calder\'on problem for the electrical impedance tomography.Comment: 18 page

    Positive-energy D-bar method for acoustic tomography: a computational study

    Full text link
    A new computational method for reconstructing a potential from the Dirichlet-to-Neumann map at positive energy is developed. The method is based on D-bar techniques and it works in absence of exceptional points -- in particular, if the potential is small enough compared to the energy. Numerical tests reveal exceptional points for perturbed, radial potentials. Reconstructions for several potentials are computed using simulated Dirichlet-to-Neumann maps with and without added noise. The new reconstruction method is shown to work well for energy values between 10−510^{-5} and 55, smaller values giving better results

    Continuous Generative Neural Networks

    Full text link
    In this work, we present and study Continuous Generative Neural Networks (CGNNs), namely, generative models in the continuous setting: the output of a CGNN belongs to an infinite-dimensional function space. The architecture is inspired by DCGAN, with one fully connected layer, several convolutional layers and nonlinear activation functions. In the continuous L2L^2 setting, the dimensions of the spaces of each layer are replaced by the scales of a multiresolution analysis of a compactly supported wavelet. We present conditions on the convolutional filters and on the nonlinearity that guarantee that a CGNN is injective. This theory finds applications to inverse problems, and allows for deriving Lipschitz stability estimates for (possibly nonlinear) infinite-dimensional inverse problems with unknowns belonging to the manifold generated by a CGNN. Several numerical simulations, including signal deblurring, illustrate and validate this approach.Comment: 40 pages, 8 figure

    Inverse problems on low-dimensional manifolds

    Full text link
    We consider abstract inverse problems between infinite-dimensional Banach spaces. These inverse problems are typically nonlinear and ill-posed, making the inversion with limited and noisy measurements a delicate process. In this work, we assume that the unknown belongs to a finite-dimensional manifold: this assumption arises in many real-world scenarios where natural objects have a low intrinsic dimension and belong to a certain submanifold of a much larger ambient space. We prove uniqueness and H\"older and Lipschitz stability and derive a globally-convergent reconstruction algorithm from a finite number of measurements. Several examples are discussed.Comment: 35 pages, 5 figure
    • 

    corecore